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We investigate torque and also conventionally defined spin Hall currents in two-dimensional �2D� spin-orbit
coupled systems of spin-1/2 particles within the linear-response Kubo formalism. We obtain some interesting
relations between the conventional and torque spin Hall conductivities for the generic effective Hamiltonian
H0=�k

0+A�k��x−B�k��y, where A�k�=�i
Aki+�ij

Akikj +�ijl
A kikjkl+¯, B�k�=�i

Bki+�ij
Bkikj +�ijl

B kikjkl+¯, and �’s
are the specific system-dependent coefficients. Specifically, we find that in the intrinsic case, the magnitude of
torque spin Hall conductivity �xy

�z �0� is always twice larger than the conventional spin Hall conductivity �xy
sz �0�,

and the two conductivities have the opposite signs, i.e., �xy
�z �0�=−2�xy

sz �0�. This universal relation, therefore,
suggests that in the intrinsic case, the total spin Hall conductivity �xy

z �0� in the 2D systems is equal to the
conventional spin Hall conductivity in magnitude but has the opposite sign, namely, �xy

z �0�=�xy
�z �0�+�xy

sz �0�
=−�xy

sz �0�. This universal relation also holds in the presence of a uniform in-plane magnetic field. We also find
that if the 2D systems are rotationally invariant, there exists a hyperangular momentum Iz= �k�

��
�k �zsz+Lz

which is conserved. Furthermore, the hyperangular-momentum current � 1
2 �Iz ,vx�� vanishes and this leads to a

hyperselection rule for the conventional spin Hall current. In particular, in the 2D k-linear Rashba and wurtzite-
type systems, Iz=sz+Lz, and the up�down�-spin current would always be accompanied by the down�up�-orbital-
angular-momentum �OAM� current. In the 2D k-cubic Rashba, Iz=3sz+Lz, and the hyperselection rule is the
same as in the k-linear Rashba system. In the 2D k-linear Dresselhaus system, on the other hand, Iz=−sz+Lz,
and the up�down�-spin current would always be followed by the up�down�-OAM current.
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I. INTRODUCTION

Spin-current generation is an important issue in the
emerging spintronics.1–3 Recent proposals of the intrinsic
spin Hall effect are therefore remarkable.4,5 In the spin Hall
effect �SHE�, a transverse spin current is generated in re-
sponse to an electric field in a system with spin-orbit
coupling.6,7 This effect has been considered to arise extrinsi-
cally, i.e., by impurity scattering.6 The scattering becomes
spin dependent in the presence of spin-orbit coupling, and
this gives rise to the SHE. In the recent proposals, in con-
trast, the SHE could arise intrinsically in hole-doped �p-type�
bulk semiconductors4 and also in electron-doped �n-type�
semiconductor heterostructures5 due to intrinsic spin-orbit
coupling in the band structure. This intrinsic SHE would thus
provide a mechanism to generate electric-driven spin current
without applied magnetic fields in semiconductors, which
can be more readily integrated with well-developed semicon-
ductor electronics. Recently, the spin accumulation at the
edges of semiconductor samples which is believed to be due
to the SHE has been measured optically.8–10 Further, large
SHE in metallic systems even at room temperature has been
detected electrically.11–13

Many theoretical papers have been written addressing
various issues about the intrinsic SHE. In Ref. 4, the SHE in
the p-type GaAs semiconductor was explained as arising
from the k-space Berry curvature in response to the applied
electric field. This intrinsic SHE would lead to the possibility
that the spin-orbit coupling can be used to manipulate spin
chirality in semiconductors without dissipation. In Ref. 14, it
was shown that the SHE in the p-type GaAs semiconductor
is robust against the disorder based on the parity invariance

of the spherical Luttinger Hamiltonian. The Berry-phase-
induced SHE was also generalized to the case of spinning
particles.15 In Ref. 16, an orbital-angular-momentum �OAM�
Hall current is predicted to exist in response to an electric
field and is found to cancel exactly the spin Hall current in
the SHE. In Ref. 17, however, ab inito relativistic band-
structure calculations show that the OAM Hall conductivity
in p-type semiconductors is 1 order of magnitude smaller
than the spin Hall conductivity, indicating no cancellation
between the spin and OAM Hall effects in bulk semiconduc-
tors. The spin Hall conductivity in the two-dimensional �2D�
k-linear Rashba system has been shown to be suppressed by
weak nonmagnetic disorder.18 However, the spin Hall con-
ductivity calculated with the consideration of the vertex cor-
rection due to the impurity scattering does not vanish, in
general, and, e.g., in 2D k-cubic Rashba system,19 2D
k-cubic wurtzite system,14 and 2D k-cubic Dresselhaus
system.20 Very recently, the large SHE in Pt metal at room
temperature13 was also theoretically investigated and was at-
tributed to be an intrinsic one due to the band anticrossings
near the Fermi level at the L and X symmetry points in the
Brillouin zone.21

The spin precession around the effective magnetic field
caused by the spin-orbit coupling leads to the fundamental
problem that the conventionally defined intuitive spin-
current operator 1

2 �v ,sz� is not conserved. Therefore, how to
properly define the spin current operator has been intensively
studied in recent years.22–24 In view of the spin continuity
equation25 �Sz

�t +� ·Js=Tz, Shi et al.22 recently provided a
proper definition of conserved spin current to resolve this
issue. The effective conserved spin current d

dt �xsz� con-
structed from the spin continuity equation is composed of
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two terms. One term is the conventional intuitive spin-
current operator dx

dt sz and the other term x
dsz

dt which is the
so-called torque spin current comes from the spin preces-
sional motion. Shi et al.22 considered the spin Hall coeffi-
cients for three widely studied semiconductor models,
namely, 2D k-linear Rashba, 2D k-cubic Rashba, and three-
dimensional �3D� Luttinger models, in the clean limit, and
found that the conserved spin Hall conductivities are dra-
matically different from the conventional spin Hall conduc-
tivities. For example, in the 2D systems, the conserved spin
Hall conductivity is equal to the conventional spin Hall con-
ductivity in size but has an opposite sign.22 In Ref. 26, the
results of calculations taking into account the conserved spin
current as well as impurity scattering effect for 2D k-linear
Rashba and k-cubic Rashba systems are reported. Recently,
we extended the conserved definition of spin-current opera-
tor and offered a proper definition of the OAM current
operator.27 We also found that in 2D Dresselhaus and
Rashba-Dresselhaus systems, the conserved spin Hall con-
ductivity is equal to the conventional spin Hall conductivity
in size but has an opposite sign.27

Clearly, it is important to consider the new definition of
spin current22,26,27 and it is of interest to know the torque and
hence conserved spin Hall coefficients in other 2D systems.
In the present paper, therefore, we study the torque, conven-
tional, and conserved spin Hall conductivities in all 2D spin-
orbit coupled systems described by a generic effective
Hamiltonian �Eq. �1�� within the frequency-dependent Kubo
linear-response theory. The generic effective Hamiltonian
covers all common 2D spin-orbit coupled systems used in
the literature such as k-linear Rasha, Dresselhaus, Rashba-
Dresselhaus, k-cubic Dresselhaus, and wurtzite-type Hamil-
tonians �Table I�. We find two interesting universal relations
among the torque, conventional, and total conserved spin
Hall conductivities. Furthermore, we explore possible con-
nections between conventional spin current and orbital mo-
tion of carriers and identify the existence of a conserved
hyperangular momentum Iz in rotationally invariant 2D spin-
orbit coupled systems. The conservation of the hyperangular
momentum Iz would lead to a hyperselection rule which dic-
tates that the up�down�-spin state in the sense of �k�

��
�k �zsz

would be accompanied by the down�up�-OAM state in these
systems.

The present paper is organized as follows. In Sec. II we
define a generic effective Hamiltonian for 2D spin-orbit
coupled systems and calculate the time evolution of Pauli-
spin and position operators in the Heisenberg picture. In Sec.
III we calculate the conventional and torque spin Hall con-
ductivities by using frequency-dependent Kubo formulae and
also present universal relations between these conductivities.
In Sec. IV we report our finding that there exists a conserved
hyperangular momentum Iz in the systems with the cylindri-
cally symmetric energy dispersion. We also demonstrate that
the existence of Iz leads to the hyperselection rule for the
conventional spin Hall current. Our conclusions are given in
Sec. V. Appendixes A and C of this paper outline our deri-
vation of the spin continuity equation, a proof of conserva-
tion of Iz, and a proof of the vanishing of the Iz current in 2D
rotational invariant systems, respectively.

II. GENERIC MODEL HAMILTONIAN

The effective Hamiltonian for spin-1/2 particles can be
expressed as a linear combination of Pauli matrices �x, �y,
and �z. In 2D systems, we consider the following general
effective Hamiltonian:

H0 = �k
0 + A�k��x − B�k��y , �1�

where �k
0=�2k2 /2m is the single-particle kinetic energy, and

functions A�k� and B�k� describe the energy dispersion
caused by the spin-orbit interaction. In general, A�k� and
B�k� can be expressed as A�k�=�i

Aki+�ij
Akikj +�ijl

A kikjkl+¯
and B�k�=�i

Bki+�ij
Bkikj +�ijl

B kikjkl+¯, where �’s are the co-
efficients to be determined for each specific system. The Ein-
stein summation convention is used. The general properties
of coefficients �’s are determined by the symmetry require-
ments. For instance, time-reversal invariance of spin current
J=

d�xsz�
dt requires that A�k� and B�k� must be an odd function

of k, i.e., A�−k�=−A�k� and B�−k�=−B�k�. This leads to the
fact that the spin-dependent part of the Hamiltonian has no
spatial inversion symmetry. In Appendix A, we show that the
systems described by Eq. �1� satisfy the spin continuity equa-
tion:

�Sz

�t +� ·Js=Tz. In Table I, we list the specific functions
A�k� and B�k� for several common 2D systems. However,
we should stress here that the following derivation is inde-

TABLE I. Some common 2D systems where the effective Hamiltonian can be described by Eq. �1�. The 	�k� describes the energy

dispersion in the presence of spin-orbit coupling, wherein 
���=	�2+
2−2�
 sin�2��, ����= 1
2 sin�2��, and tan−1 �=

ky

kx
. The �xy

sz �0� is the
conventionally defined spin Hall conductivity. The pseudospin angular momentum of the k-cubic Rashba hole system used in the calculation
of spin current is S= 3

2��� . Superscript �*� denotes that the system is not rotationally invariant.

2D system A�k� B�k� 	�k� �xy
sz �0� References

Rashba �ky �kx �k −
e
 / 8� 28

Dresselhaus ��001�� 
kx 
ky 
k 
e
 / 8� 29

Dresselhaus ��110��* �kx −�kx
	2�k cos � 0 3

Rashba-Dresselhaus* �ky −
kx �kx−
ky k
��� −
e
 / 8�sign��2−
2� 27, 30, and 31

k-cubic Rashba �hole� i�R / 2 �k−
3 −k+

3� �R / 2 �k−
3 +k+

3� �Rk3 −9
e
�2 / 16�2m�R �1 / kF
+ − 1 / kF

− � 32

k-cubic Dresselhaus* 
Dkxky
2 
Dkykx

2 
Dk3���� 
e
�2 / 16�2m
D�d��csc � / kF
+��� − csc � / kF

−��� � 20

Wurtzite type ��o+
ok2�ky ��o+
ok2�kx �ok+
ok3 −
e
�2 / 16m� tan−1�
	�o
o�kF

+−kF
−�

�o+
okF
+kF

− � / 	�o
o 10 and 33
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pendent of the detailed forms of A�k� and B�k�.
We should emphasize that Eq. �1� is an effective Hamil-

tonian for 2D systems valid only near the Brillouin-zone
center and is not a bare Hamiltonian that describes the band
structure of the whole Brillouin zone. In other words, Eq. �1�
is applicable to the 2D semiconductor structures with the
electron or hole pocket centered at the Brillouin-zone center,
such as p-type zinc-blende semiconductors and n-type wurtz-
ite nitrides, but not to the metals with a complex Fermi sur-
face such as platinum.21 In writing the effective Hamiltonian
�1�, we made the assumption that the particle spin-1/2 �or the
pseudospin 1/2 for k-cubic Rashba Hamiltonian� lies in the
two-dimensional plane. For these spin-1/2 particles, we need
only the two-component Bloch wave function and thus the
effective Hamiltonian can be written as the linear combina-
tion of Pauli matrices. Since the particle spin lies in the
plane, the spin splittings induced by bulk or structure inver-
sion asymmetry can be described by introducing the in-plane
components of the k-dependent effective magnetic field, in
which they are A�k� and B�k�. The periodic potential and
spin-orbit coupling effect would enter the effective Hamil-
tonian via the A�k� and B�k�. The explicit forms of A�k� and
B�k� depend on the symmetries of the underlying crystalline
structure and band structure near the Brillouin-zone center.
Since the 2D system we considered is time-reversal invariant
�zero magnetic field�, the spin splitting would result from the
spatial inversion asymmetry �or structure inversion asymme-
try�. This implies that A�k� and B�k� are odd functions of k.

For the convenience of derivation, it turns out to be useful

to introduce a vector M� = �Mx ,My�. The in-plane components

of vector M� = �Mx ,My� are Mx�cos �= B
	 and My �sin �

= A
	 . The Hamiltonian �Eq. �1�� can now be rewritten as

H0 = �k
0 + 	��� � M� �z, �2�

where 	�k�= �A2+B2�1/2 is the energy dispersion of spin
splitting determined by the explicit forms of A�k� and B�k�
�e.g., Table I�. The vector Pauli matrix used in Eq. �2� is ��
= ��x ,�y�. The eigenenergy of Eq. �2� is En�k�=�k

0−n	�k�
and the corresponding eigenvector is given by


nk� =
1
	2


e−i��k�

in
� , �3�

where the ��k� is

��k� = tan−1
A�k�
B�k�

� �4�

and the band index is denoted as n=�. It is straightforward

to show that ��� �M� �z
2= �Mx

2+My
2�=1. The time evolution op-

erator exp�iH0t /�� can be further written as

eiH0t/� = ei�k
0t/��cos
�t

2
� + i��� � M� �zsin
�t

2
�� , �5�

where �=2	 /�. By using the definition of Heisenberg pic-
ture for Schrödinger operator

O, O�t� = exp�iH0t/��O exp�− iH0t/�� ,

one can show that the time evolution of Pauli-spin operators
are given by

�x�t� = �x − Mx sin��t��z + Mx��� · M� ��cos��t� − 1� ,

�y�t� = �x − My sin��t��z + My��� · M� ��cos��t� − 1� ,

�z�t� = cos��t��z + ��� · M� �sin��t� . �6�

It can be shown that �nk
��� ·M� �
nk�= �nk
�z
nk�=0 by the
use of the eigenstate in Eq. �3�. This means that the expec-
tation value of the z component of the spin operator vanishes
in the absence of electric field. The time evolution position
operator can be written as x�t�=x�0�+�x�t� and

�x�t� = � ��k
0

� � k
+

1

2
��� � M� �z
 ��

�k
��t +

1

2

��

�k

���cos��t� − 1��z + ��� · M� �sin��t�� , �7�

where x�0� is the initial condition and �x�t=0�=0. It can be
shown that in the pure Rashba system, Eq. �7� would repro-
duce the result given in Ref. 34. The physical meaning of
each term is as follows. If the spin-orbit coupling vanishes,
one has 	=0, and the time evolution position operator �7�
reduces to the free particle equation of motion x�t�=x�0�
+

��k
0

��k t. The second term of Eq. �7� is the displacement arising
from the anomalous velocity in the presence of spin-orbit
coupling. The anomalous velocity plays an important role in
the anomalous Hall effect.35 The third and fourth terms have
the oscillation behavior inducing the Zitterbewegung.34,36,37

III. SPIN HALL CONDUCTIVITY

As mentioned before, the conserved spin current is di-
vided into two terms,

d

dt
�xsz� =

dx

dt
sz + x

dsz

dt
. �8�

In addition to the conventional spin current dx
dt sz, one has to

introduce the torque spin current x
dsz

dt in order to satisfy the
conserved spin continuity equation. On the other hand, the
time-reversal symmetry of the conserved spin current �8�
would lead to the spatial inversion asymmetry of the spin-
dependent part of Hamiltonian �1�. This can be seen as fol-

lows. From the commutator 1
i� ��z ,H0�=��� ·M� , since the po-

sition operator is even under time-reversal operation, the
invariance of torque spin current under time-reversal symme-
try must require A�−k�=−A�k� and B�−k�=−B�k�. The time
evolution of the conserved spin current is

J�t� =
1

2
�v�t�,sz�t�� +

1

2
�x�t�,

1

i�
�sz,H0��t��

� Jsz�t� + J�z�t� + J�0�t� , �9�

where
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Jsz�t� =
1

2
�v�t�,sz�t�� �10�

is the conventional spin current,

J�z�t� =
1

2
��x�t�,

1

i�
�sz,H0��t�� �11�

is the torque spin current which is independent of the choice
of origin of coordinate system and

J�0�t� =
1

2
�x�0�,

1

i�
�sz,H0��t�� �12�

is the other part of torque spin current which depends on the
initial choice of the origin of the coordinate system. The
time-dependent part of the position operator �x�t� is given by
Eq. �7�. It can be shown that �nk
Jsz�t=0�
nk�= �nk
J�z�t
=0�
nk�=0 and �nk
J�0�t=0�
nk�=0. This leads to the fact
that the conserved spin current vanishes at t=0 as required,
namely, �nk
J�t=0�
nk�=0 in the absence of external elec-
tric field. The value of Eq. �12� is the torque spin current
with reference to the initial choice of the origin of the coor-
dinate system. We could choose the initial position of the
carrier as the origin of the coordinate system and, as a result,
Eq. �12� would not contribute to the spin accumulation. In
that sense, the conserved spin current J�t� can be divided

into two terms J�t�= J̃�t�+J�0, where

J̃�t� = Jsz�t� + J�z�t� �13�

corresponds to the total spin current which is free from the
choice of the origin of the coordinate system. Equation �13�
could satisfy the initial condition, namely, �nk
J̃�t=0�
nk�
=0 because it can be shown that �nk
Jsz�t=0�
nk�=0 and
�nk
J�z�t=0�
nk�=0. The frequency-dependent Kubo for-
mula for a spatially homogeneous electric field38 is

������ =
q/�

�� + i���0

�

dtei��+i��t 1

V�
nk

fnk

��nk
�J��t�,v��0��
nk� , �14�

where q is the carrier charge, i.e., q=−
e
 for electrons, and
fnk is the Fermi distribution at zero temperature. The param-
eter � is used to regularize the integral and the direction of
external electric field is denoted as index �. We will calculate
the conventional and torque spin Hall conductivities by using
Eq. �14�. We assume that the electric field is applied in the y
direction ��→y�. The transverse spin current is composed of

conventional and torque spin Hall currents J̃x�t�=Jx
sz�t�

+Jx
�z�t�. The conventional spin Hall current in the x direction

is Jx
sz�t�= 1

2 �vx ,sz��t�, and it can be evaluated as

Jx
sz�t� =

�

2
ṽx�z�t� , �15�

where ṽx is defined as ṽx=�kx /m. The torque spin Hall cur-
rent in the x direction is Jx

�z�t�= �
2

1
2 ��x�t� , 1

i� ��z ,H0��. After

substitution of the commutator 1
i� ��z ,H0�=��� ·M� to the

torque current and straightforward calculation, one can ob-
tain

Jx
�z�t� =

�

2
��ṽxt���� �t� · M� +

�

2

��

�kx
sin��t�� , �16�

where �x�t� given in Eq. �7� was used and �� �t�
= ��x�t� ,�y�t�� wherein �x�t� and �y�t� are given in Eq. �6�.
With the definition of conserved spin current, the total spin
Hall conductivity is the sum of contributions of conventional
and torque spin Hall currents,

�xy
z ��̃� = �xy

sz ��̃� + �xy
�z ��̃� , �17�

where �̃=�+ i�. The first and second terms in the right-hand
side of equality correspond to the conventional spin Hall
current and spin torque current, respectively. By using Eq.

�14� and vy�0�= ṽy + �	
��ky

��� �M� �z+ ��
��ky

	��� ·M� �, one can ob-
tain

�xy
sz ��̃� =

− q

4�2m
�

kF
−

kF
+

dSk

	�kx
��
�ky

�
�̃2 − �2 , �18�

for the conventional spin Hall conductivity and

�xy
�z ��̃� =

− 2q

�2m�2�
kF

−

kF
+

dSk

	3�kx
��
�ky

�
��̃2 − �2�2 , �19�

for torque spin Hall conductivity, where �̃=�+ i�, �
=2	 /�, kF

� is Fermi momentum for band n=�, and dSk
=kdkd�. In the absence of spin-orbit coupling, 	=0, the
spin Hall conductivity vanishes as one can see from Eqs.
�18� and �19�.

A. Static limit: �̃=0

In the intrinsic case and the static limit �i.e., �̃=0�, after
some algebraic calculations, one can obtain from Eqs. �18�
and �19� an exact relation

�xy
�z �0� = − 2�xy

sz �0� . �20�

Thus, the torque spin Hall conductivity is simply a constant
�−2� multiple of the conventional spin Hall conductivity.
This universal relation implies that in the spin-1/2 2D sys-
tems with spin-orbit coupling, the magnitude of the torque
spin Hall conductivity is always twice larger than the con-
ventional spin Hall conductivity and has an opposite sign.
The spin z component is not a constant of motion, as shown
by the commutator of the sz and H0. We find that, by virtue
of the commutation properties of Pauli-spin-1/2 matrices,
�sz ,H0� is a linear combination of the in-plane spin compo-
nents, namely, x and y components. We can rewrite the

Hamiltonian as H0=�k
0+�� ·B� eff, where B� eff is the effective

magnetic field in the k space. The time derivative of spin z

component is d�z /dt= �−2���� �B� eff�z /� and the quantity −2
on the right-hand side of equality actually yields the result
that the magnitude of intrinsic torque spin Hall conductivity
is always twice larger than conventional spin Hall conduc-
tivity. Physically, it is the spin precession that leads to the
result that the magnitude of torque spin Hall conductivity is
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twice larger than conventional, and the sign of torque spin
Hall conductivity is opposite to the conventional spin Hall
conductivity. We notice that the k-cubic Rashba system de-
scribing spin-3/2 heavy hole also obeys Eq. �20�. In the
k-cubic Rashba system,32 Pauli matrices operate on the states
with spin-3/2 projection along the growth direction. In that
sense, the k-cubic Rashba system actually represents a
pseudospin-1/2 system. We also note that the spin-dependent
part of the Hamiltonian of the k-cubic Rashba is originally
written as

i�R

2 �k−
3�+−k+

3�−�, where k�=kx� iky and ��

=�x� i�y. This can be rewritten as A�k��x−B�k��y with A

=
i�R

2 �k−
3 −k+

3� and B=
�R

2 �k−
3 +k+

3�. The simple relation between
intrinsic conventional and torque spin Hall conductivities
�20� is independent of the detailed forms of spin splitting
�i.e., A�k� and B�k�� and hence the energy dispersion �i.e.,
	�k��. The total intrinsic spin Hall conductivity �xy

z �0�
= ��xy

sz �0�+�xy
�z �0�� is then given by

�xy
z �0� = − �xy

sz �0� . �21�

The sign of the total spin Hall conductivity is always oppo-
site to the sign of the conventional spin Hall conductivity.
Even if higher order k terms were included in the theoretical
calculations, the conclusions described above would still be
true. It should be emphasized that the validity of Eq. �21� is
independent of the sign of carrier charge. Interestingly, Eq.
�21� suggests that the properties of the total intrinsic spin
Hall conductivity can be characterized by the conventional
spin Hall conductivity only. Both Eqs. �20� and �21� are the
universal results for 2D spin-orbit coupled systems. Let us
now apply formulae �18� and �19� to some specific systems.
In the Rashba-Dresselhaus system, for example, we can de-
rive from Eqs. �18� and �19� that �xy

sz = �q /8��sign��2−
2�
and �xy

�z =−�q /4��sign��2−
2�. The results agree with previ-
ous works for the Rashba system22 and for the Rashba-
Dresselhaus system.27 We note that when �=
, A=−B and �
is independent of k. In this case, the spin Hall conductivity
vanishes.27,31 For the Dresselhaus Hamiltonian along the
�110� direction �see Table I�, we have A=−B and thus the
spin Hall conductivity also vanishes. It has been shown that
the �110� Dresselhaus Hamiltonian with êz along �001� direc-
tion is different from the Rashba-Dresselhaus model with �
=
 only by a unitary transformation.39 The exact SU�2� spin
rotation symmetry has been investigated in both systems.39

We also note that Eq. �21� is still true even if there exists

a uniform in-plane external magnetic field B� , as can be seen
as follows. The interaction of the spin and magnetic field is

proportional to �� ·B� =�xBx−�y�−By�. The Hamiltonian is
now given by H=�k

0+�x�A�k�+�BBx�−�y�B�k�−�BBy�,
where �B is the Bohr magneton. We can redefine functions
A��k� and B��k� as A��k�=A�k�+�Bx and B��k�=B�k�
−�By, respectively. Therefore, though the numerical values
of Eqs. �18� and �19� may change, Eq. �20� is still valid in
the presence of a uniform in-plane magnetic field.

Our predictions of, e.g., the conserved spin Hall current
and conductivity �Eq. �21��, can be tested by direct measure-
ments of the spin Hall current or conductivity. In particular,
our prediction that the total spin Hall conductivity differs
from the conventional spin Hall conductivity only in sign

�Eq. �21�� could be easily tested. As for the induction of a
magnetic field by a charge current, a spin current would gen-
erate an electric field.23,40 Therefore, our prediction for the
conserved spin Hall current could be tested by a comparison
of the measured spin-current-induced electric field to the nu-
merical simulation for, e.g., a mesoscopic spin-orbit coupled
system. Another kind of experiment is to determine the in-
verse spin Hall conductivity by measuring the charge current
and Zeeman field gradient.22 The sign and magnitude of the
conserved spin Hall conductivity can then be obtained via
the Onsager relation.22 Indeed, large spin Hall effect in me-
tallic systems at room temperature has recently been detected
by the method of inverse spin Hall effect.11–13 Hopefully, our
interesting predictions would stimulate measurements of in-
verse spin Hall effect in 2D semiconductor systems in the
near future.

B. Finite frequency case: �̃Å0

At finite frequencies, the torque spin Hall conductivity is
not a constant multiple of conventional spin Hall conductiv-
ity. Nonetheless, we find that Eq. �18� is related to Eq. �19�
by the following equation:

�xy
�z ��̃� = 
− 2 − �̃

�

��̃
��xy

sz ��̃� . �22�

The second term in Eq. �22� comes from the variation of the
k-space effective magnetic field with the frequency-
dependent external electric field. Taking into account the
torque spin current, we find that the total spin Hall conduc-
tivity is directly related to the conventional spin Hall con-
ductivity still. Substituting Eq. �22� into Eq. �17�, we obtain
the relationship between conventional spin Hall conductivity
�xy

sz ��̃� and total spin Hall conductivity �xy
z ��̃� in the pres-

ence of nonzero frequency-dependent electric field,

�xy
z ��̃� = −

�

��̃
��̃�xy

sz ��̃�� . �23�

Equation �23� shows that the total spin Hall conductivity can
be determined directly from the frequency spectrum of con-
ventional spin Hall conductivity. Unlike the static limit, the
total ac spin Hall conductivity is not proportional to the con-
ventional spin Hall conductivity. It follows from Eq. �23�
that the step-function behavior of the conventional spin Hall
conductivity would result in a large response of the total spin
Hall conductivity. This large response has recently been in-
vestigated in the Rashba-Dresselhaus system in Ref. 30. It
can be shown that Eqs. �18� and �19� for the Rashba-
Dresselhaus system agree with the results in Ref. 30. We also
find that the simple relation between the torque and conven-
tional spin Hall conductivities �Eq. �22�� would be main-
tained even when the external magnetic field is applied.

IV. CONSTANT OF MOTION IN ROTATIONALLY
INVARIANT SYSTEMS

A. Constant of motion

If a 2D system is invariant under rotation about the z axis,
its energy dispersion is cylindrically symmetric, i.e., 	
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=��c�k���=1,2 ,3 , . . .�. We find that in this case, there exists
a conserved quantity whose operator Iz is defined as

Iz = 
k �
��

�k
�

z

sz + Lz. �24�

Let us call this quantity Iz the hyperangular momentum. We
can show that Iz satisfies the following commutation relation
�see Appendix B�:

�Iz,H0� = 0, �25�

where sz= �
2 �z, Lz=��xky −ykx� is the z component of the

OAM, and H0 is given in Eq. �1� or Eq. �2�. Interestingly,
this implies that in the rotationally invariant spin-orbit
coupled systems, the flow of �k�

��
�k �zsz would be accompa-

nied by the orbital-angular momentum Lz, and the combina-
tion of these quantities is actually a constant of motion. As a
result, the spin current would in general be accompanied by
the OAM current because of the spin-orbit coupling. In that
sense, the external electric field would induce the current of
angular momentum �k�

��
�k �zsz and the OAM current simul-

taneously.
Further, it can be shown that the hyperangular-momentum

Hall current � 1
2 �Iz ,vx�� vanishes in the steady-state case

within the linear-response Kubo formalism �see Appendix
C�. It follows that the up-spin �down-spin� state in the sense
of �k�

��
�k �zsz would be accompanied by the down-OAM �up-

OAM� state, rendering the hyperangular momentum con-
served. Let us now apply this result to some specific systems.
For the wurtzite-type and k-linear Rashba systems, Iz=sz
+Lz, i.e., the hyperangular momentum is equal to the total
angular momentum. For the k-cubic Rashba hole system, one
would have Iz=3sz+Lz. Therefore, Eq. �24� gives the correct
pseudospin angular momentum of hole which is 3

2��z. The
conservation of hyperangular momentum in these systems
would then lead to the result that the spatial trajectory of a
down-spin �−êz� carrier would behave as having its orbital-
angular momentum pointed to +êz and vice versa �see Fig.
1�a��. In other words, in these systems, the situation of an
up-spin �down-spin� state accompanied by an up-OAM
�down-OAM� trajectory is forbidden. This is a hyperselec-
tion rule that is present in the cylindrically symmetric 2D
spin-orbit coupled systems. It must be emphasized that this
hyperselection rule depends on the quantity �k�

��
�k �z. For

example, in the k-linear Dresselhaus system, we find that Iz
=−sz+Lz. Therefore, in contrast to the k-linear and wurtzite-
type systems, the hyperselection rule in the k-linear Dressel-
haus system implies that an up-spin �down-spin� state would
be accompanied by an up-OAM �down-OAM� state �see Fig.
1�b��. The situation of an up-spin state accompanied by an
down-OAM is now forbidden in this Dresselhaus system.
Nevertheless, we should emphasize that the electric field-
induced OAM current would not result in magnetization ac-
cumulation at the edges of sample. This is due to the fact that
the OAM is not an intrinsic quantity of electrons or holes,
i.e., the magnetic moment associated with the orbital-angular
momentum would vanish when the carrier velocity reaches
zero at the edges of sample, as can be understood from the
definition of Lz. Therefore, the magnetic-moment accumula-

tion at the edges of sample would come from the spin angu-
lar momentum only. In short, it is interesting to notice that
the topological quantity �k�

��
�k �z is an integer number for

k-linear Rashba, k-linear Dresselhaus, k-cubic Rashba, and
wurtzite-type system; whereas they are 1, −1, 3, and 1, re-
spectively. The topological number indicates that the con-
stant of motion in 2D rotationally invariant system is the
hyperangular momentum rather than simply the total angular
momentum sz+Lz.

It should be pointed out that although both hyperangular-
momentum conservation and hyperselection rule exist in ro-
tationally invariant systems, this rotational symmetry may be
broken when higher-order terms of ki are included in the
A�k� and B�k� in Eq. �1�. It would be necessary to include
the higher-order terms of ki in Eq. �1� when the 2D semicon-
ductor systems considered have a very large carrier concen-
tration. When the weak symmetry-breaking higher-order
terms do appear, the hyperangular momentum �Eq. �24�� is
no longer conserved but the universal relation �Eq. �20�� still
holds.

In Sec. IV B, we will describe the close relation between
Berry vector potential and hyperangular momentum.

B. Geometrical interpretation

As mentioned above, the quantity �k�
��
�k �zsz together

with the orbital-angular momentum is conserved in a rota-
tionally invariant system. In the following, let us explain that
the quantity �k�

��
�k �z actually comes from the topological

properties of the Berry vector potential. In the 2D systems
with a cylindrically symmetric dispersion, the vector ��

�k , in

general, is perpendicular to the wave vector k, i.e., k · ��
�k =0.

For example, it can be shown that the wurtzite-type, k-linear

down-spin

up-spinup-OAM

down-OAM

up-spin

down-spinup-OAM

down-OAM

a)

b)

FIG. 1. Schematic diagrams showing the relationship between
spin and OAM of a carrier. The direction of the OAM is determined
by the right-handed sense. The dotted line illustrates the spatial
trajectory of a carrier. �a� for the Wurtzite-type, k-linear, and k-cubic
Rashba systems and �b� for the k-linear Dresselhaus system.
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Rashba, k-cubic Rashba, and k-linear Dresselhaus systems
and the dot product of k and ��

�k are zero. In that sense, the

three vectors k, ��
�k , and k�

��
�k form an orthogonal frame

fixed on the carrier �see Fig. 2�.
On the other hand, the Berry vector potential in a system

described by Hamiltonian Eq. �2� can be written as

A�k� = �nk
i
�

�k

nk� =

1

2

��

�k
, �26�

where the eigenvector �3� was used. The projection of spin
operator onto the in-plane axes contains two terms. One term
is the so-called spin helicity �� ·k in the 2D spin-orbit coupled
system and the other is the projection of spin on the Berry
vector potential A ·�� . The quantity �k�

��
�k �zsz then comes

from the noncommutativeness of the two in-plane projec-
tions, viz.,

�k · �� ,A · �� � = �k · �� ,
1

2

��

�k
· ��� = i
k �

��

�k
�

z

�z, �27�

where the commutation relations of Pauli matrices were
used. The overall coefficient of �k�

��
�k �zsz cannot be deter-

mined by the commutation relation alone. However, in the
system with the cylindrically symmetric dispersion, the
hyperangular-momentum conservation forces the overall co-
efficient of �k�

��
�k �zsz to be unity. Similar to the topological

force induced by the noncommutative position operator,4 the
spin part of conservation of the hyperangular momentum
comes from the noncommutative properties of �� ·A and �� ·k,
whereas they are the projection of spin on the two orthogonal
axes. Finally, it must be stressed that in the systems with the
noncylindrically symmetric dispersion, the quantity �k
�

��
�k �zsz can also be defined as the noncommutativeness of

spin helicity �� ·k and �� ·A. However, in that case, the quan-
tity �k�

��
�k �zsz plus the orbital-angular momentum are not

conserved. Therefore, the orbital motion of carrier does not
accompany with �k�

��
�k �zsz; namely, the hyperangular angu-

lar momentum is not conserved in this case.
The conserved quantity in spin-orbit coupled systems can

be written as the sum of the spin and orbital terms. In the
free-atomic case, the spin term is just the Pauli-spin operator.
When the crystal environment is included, the spin term ap-
pears to be different from the Pauli-spin operator. It has a
nontrivial dependence on energy dispersion that arises from
the spin-orbit coupled effect. We find that the general coef-

ficient is a nontrivial multiplication of �k�
��
�k �z in rotation-

ally invariant system. The quantity �k�
��
�k �z is proportional

to the expectation value of the orbital-angular momentum.
It is of course not surprising that a conserved angular

momentum would exist in rotationally invariant systems. The
conserved angular momentum in spin-orbit coupled systems
would be the sum of the spin and orbital terms. In the free-
atom case, the spin term is just the Pauli-spin operator, and
the sum of the spin and orbital terms is indeed the total
angular momentum. However, we find here that in the pres-
ence of the crystal environment, the spin term is not neces-
sarily equal to the Pauli-spin operator but has a nontrivial
dependence on the energy dispersion �Eq. �24�� that arises
from the spin-orbit coupling effect. Therefore, we would like
to use the hyperangular momentum here to differentiate Eq.
�24� from the well-known expression of the total angular
momentum in the free-atom case. Furthermore, in the sys-
tems described by the generic Hamiltonian �Eq. �1��, we find
that the coefficient in the spin term in Eq. �24� is related to
the Berry vector potential of the underlying band structure.

V. CONCLUSIONS

In conclusion, we have derived some interesting relations
between the conventional and torque spin Hall conductivities
for all 2D spin-orbit coupled systems described by the ge-
neric effective Hamiltonian �1� in the presence of frequency-
dependent electric field. In particular, we find that a universal
relation �Eq. �21�� between total and conventional spin Hall
conductivities, i.e., �xy

z �0�=−�xy
sz �0� for �̃=0. Equation �21�

is independent of the detailed form of energy dispersion 	�k�
�i.e., A�k� and B�k��, and hence its validity is not restricted
to the systems listed in Table I. We also found that in 2D
rotationally invariant systems, a conserved hyperangular mo-
mentum Iz exists and the hyperangular momentum current
vanishes. This would result in a hyperselection rule that the
up-spin �down-spin� state in the sense of �k�

��
�k �zsz would

be accompanied by the down-OAM �up-OAM� state. Finally,
we explained that the spin-dependent part of Iz comes from
the noncommutative property of spin helicity �� ·k and �� ·A.
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APPENDIX A: SPIN CONTINUITY EQUATION

In this appendix, we show that the Hamiltonian

H =
p2

2m
+ Hso + V�x� �A1�

would satisfy the spin continuity equation,

�Sz

�t
+ � · Js = Tz, �A2�

where Hso=A�p��x−B�p��y describes the spin-orbit interac-
tion, V�x�=−qE ·x is the potential induced by a homoge-

FIG. 2. A schematic diagram showing the relationship between
vectors k, ��

�k , and k�
��
�k .
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neous electric field E, Sz=�†sz� is the spin density, Js

=Re��† 1
2 �v ,sz��� is the conventional spin current, and Tz

=Re��† 1
i� �sz ,H0��� is the source term of spin current. The

carrier velocity is defined as v= �H
�p . The real part �imaginary

part� of �¯� is denoted as Re�¯� �Im�¯�� and sz= �
2 �z. By

using the Schrodinger equation with the two-component

wave function �= �
�↑

�↓
�,

i�
��

�t
= H� , �A3�

one can obtain

i�
�

�t
��†sz�� = �− 
 p2

2m
��†

sz� + �†sz
 p2

2m
���

+ �− �Hso��†sz� + �†szHso��

+ �− �V�x���†sz� + �†szV�x��� .

�A4�

We note that ��Hso+V�x����†sz�= ��†sz�Hso+V�x����† be-
cause the Pauli-spin matrix �z satisfies �z

†=�z, i.e., is Her-
mitian. On the other hand, one can also show that

��†szp
2� − �p2��†sz�� = 2p · Re��†psz�� . �A5�

After substituting Eq. �A5� into Eq. �A4�, one gets

i�
�

�t
��†sz�� = p · Re��† p

m
sz�� + 2i Im��†szHso��

+ 2i Im��†szV�x��� . �A6�

We also note that szHso can be written as szHso= 1
2 �sz ,Hso�

+ 1
2 �sz ,Hso�, where the first term vanishes because the Pauli

matrices satisfy ��i ,� j�=2�ij. One can obtain

Im��†szHso�� = Im��†1

2
�sz,Hso���

=
�

2
Re��† 1

i�
�sz,Hso��� . �A7�

The last term of Eq. �A6� vanishes because V�x� is real as
required by the Hermitian property of Hamiltonian �A1�. Fi-
nally, substitution of Eq. �A7� into Eq. �A6� yields

�

�t
��†sz�� = − � · Re��†1

2
�v,sz���

+ Re��† 1

i�
�sz,Hso��� , �A8�

where the commutation relation �
�Hso

�p ,sz�=0 was used. Equa-
tion �A8� is the desired spin continuity equation. The average
spin torque vanishes,22 and hence we have �dxTz=0. The
spin torque density can be written as the divergence of spin
torque dipole density P��x�, namely, Tz=−� ·P��x�. On the
other hand, the spin dipole density vanishes outside the
sample, and we have �VdxP�=�Vdx�−x� ·P��=�Vdx�xTz�.
Therefore, the spin dipole density can be written as P��x�

=Re��† 1
2 �x ,

dsz

dt ���. Finally, the effective conserved spin
continuity equation can be written as

�Sz

�t
+ � · J�x� = 0, �A9�

where J�x�=Re��†Ĵ�� and the effective conserved spin-

current operator is Ĵ= 1
2 �v ,sz�+ 1

2 �x ,
dsz

dt � which is the sum of
conventional and torque spin currents.

APPENDIX B: CONSERVATION OF Iz

In this appendix, we demonstrate that the hyperangular
momentum Iz defined in Eq. �24� is a conserved quantity
when the energy dispersion 	 is rotationally invariant. First,
it can be shown that the velocity operator can be written as

vx =
1

i�
�x,H0� = ṽx +

�	

� � kx
��� � M� �z +

��

� � kx
	��� · M� � ,

�B1�

where H0=�k
0+	��� �M� �z was used. The y component of ve-

locity can be obtained by replacing the index x by y. The z
component of orbital-angular momentum operator is defined
as Lz=��xky −ykx�. Using the velocity operator, the commu-
tator �Lz ,H0� is straightforwardly evaluated as follows:

1

i�
�Lz,H0� = ��vxky − vykx� = 	
 ��

�kx
ky −

��

�ky
kx���� · M� �

+ 
 �	

�kx
ky −

�	

�ky
kx���� � M� �z. �B2�

We now define the operator Iz as

Iz = 
k �
��

�k
�

z

sz + Lz, �B3�

where �=tan−1� A
B � and sz= �

2 �z is the Pauli-spin operator. Us-
ing Eqs. �B2� and �B3�, we obtain

1

i�
�Iz,H0� = 
 �	

�kx
ky −

�	

�ky
kx���� � M� �z, �B4�

where 1
i� ��z ,H0�= 2	

� �� ·M� was used. Equation �B4� is the
main result of this appendix, and it means that, in general,
the Iz operator is not a conserved quantity. The right-hand
side of Eq. �B4� explicitly depends on the form of energy
dispersion. It is interesting to note that the spin term of hy-
perangular momentum �Eq. �B3�� is not the Pauli matrices
with the multiplication of � /2 but the multiplication of


k �
��

�k
�

z

, �B5�

which is further explained in Sec. IV B.
Now consider a 2D system with the cylindrically symmet-

ric energy dispersion that can be written as the power series
of magnitude of k denoted as k= 
k
, namely, 	=��c�k�. The
right-hand side of equality in Eq. �B4� then becomes
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 �	

�kx
ky −

�	

�ky
kx� = �

�

c��k�−1
 kx

k
ky −

ky

k
kx� = 0. �B6�

Therefore, the hyperangular momentum Iz is a conserved
quantity in the rotationally invariant 2D systems.

APPENDIX C: NULL HYPERANGULAR MOMENTUM
CURRENT

In this appendix, we will show that the hyperangular mo-
mentum current 1

2 �Iz ,v� vanishes in the linear-response re-
gime. In the static case, the Kubo formula can be written as

��� = q� �
n�n�

�
k

fnk − fn�k

�En�k� − En��k��2 Im�nk
J�
n�k�

��n�k
v�
nk� , �C1�

where both eigenstate 
nk� and eigenenergy En�k� are given
in Sec II. In the following, the external electric field is as-
sumed to be applied in the y direction, and we calculate the
conductivity �xy. First of all, the hyperangular momentum
current can be divided into two terms Jx

Iz =Jx
Sz +Jx

Lz. First term
is the hyperspin current

Jx
Sz =

1

2
�
k �

��

�k
�

z

sz,vx� , �C2�

corresponding to the hyperspin Hall conductivity �xy
Sz. The

second term of Jz
Iz is the orbital current

Jx
Lz =

1

2
�Lz,vx� , �C3�

corresponding to the orbital-Hall conductivity �xy
Lz. As a re-

sult, the hyperangular momentum Hall conductivity can be
written as

�xy
Iz = �xy

Sz + �xy
Lz . �C4�

We first calculate the orbital-Hall conductivity. By using the
velocity operator �B1�, we have

Im�nk
Jx
Lz
− nk��− nk
vy
nk�

= n
�kx

2m
	

��

�ky

 ��

�k
� k�

z

−
1

2�
Im�i	

��

�ky

i

�A

�kx

+
�B

�kx
�e−i��
 ��

�k
� k�

z

. �C5�

The second term of Eq. �C5� does not contribute to the
orbital-Hall conductivity �xy

Lz because of the even power of
band index n. The orbital-Hall conductivity �xy

Lz with the sub-
stitution of Eq. �C5� gives

�xy
Lz =

q�2

16�2m
�

kF
−

kF
+

dSk

kx
��
�ky

	

 ��

�k
� k�

z

. �C6�

We now consider the hyperspin Hall current. Taking into
account the hyperspin and the velocity operator �B1�, we
have

Im�nk
Jx
Sz
− nk��− nk
vy
nk� = n

�kx

2m
	

��

�ky

k �

��

�k
�

z

.

�C7�

Inserting Eq. �C7� into �xy
Sz, we obtain

�xy
Sz =

q�2

16�2m
�

kF
−

kF
+

dSk

kx
��
�ky

	

k �

��

�k
�

z

. �C8�

Comparison of Eqs. �C6� and �C8� gives �xy
Sz =−�xy

Lz. As a
result, we have �xy

Iz =�xy
Sz +�xy

Lz =0, i.e., the hyperangular mo-
mentum current is zero.
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